Spectroscopic Elucidation of Glycobismines, First Naturally Occurring Binary Acridone Alkaloids containing a Carbon-Carbon Linkage

Hiroshi Furukawa,*,a Chihiro Ito, ${ }^{a}$ Tomohisa Ono, ${ }^{a}$ Tian-Shung Wu ${ }^{\text {b }}$ and Chang-Sheng Kuoh ${ }^{\text {c }}$
${ }^{a}$ Faculty of Pharmacy, Meijo University, Tempaku, Nagoya 468, Japan
${ }^{b}$ Department of Chemistry, National Cheng Kung University, Tainan, Taiwan, R.O.C.
${ }^{c}$ Chia-Nan Junior College of Pharmacy, Tainan, Taiwan, R.O.C.

Abstract

The structures of glycobismine-A 1, -B 4 and -C 4', novel binary acridone alkaloids, from Glycosmis citrifolia (Willd.) Lindl. (Rutaceae) have been elucidated by spectroscopic studies using ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ long-range COSY and/or HMBC experiments. In a preliminary communication we reported the structure of glycobismine-A 1 as the first naturally occurring binary acridone alkaloid having a carbon-carbon linkage. This paper deals with the complete and detailed spectroscopic structural elucidation of compound 1 and the structures of two additional new binary acridone alkaloids, glycobismine-B 4 and -C 4'.

Isolation of many kinds of monomeric acridone alkaloids from plants of the genus Glycosmis has been reported. ${ }^{2.3}$ In our continuing investigation of the acridone alkaloids, ${ }^{2.4}$ we describe here the isolation and structural elucidation of three novel binary acridone alkaloids which we have named glyco-bismine-A 1, ${ }^{1}$-B 4 and -C 4' from Glycosmis citrifolia (Willd.) Lindl. (Rutaceae) collected in Taiwan. ${ }^{2}$ Glycobismine-A 1 is the first example of naturally occurring binary acridone alkaloids containing a carbon-carbon linkage between the two halves of the molecule. ${ }^{1}$

An ethanolic extract of the root and stem barks of G. citrifolia was fractionated by a combination of silica gel column and preparative TLC to give new binary alkaloids which we have named glycobismines, along with new and known monomeric acridones as previously reported. ${ }^{2}$

Structure of Glycobismine-A 1. ${ }^{1}$-Glycobismine-A 1 was isolated as yellow needles, m.p. $256-258^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}} \pm 0$ in chloroform, from the dried stem bark of the plant, and showed no $C D$ absorption in the range between 200 and 400 nm in ethanol. The molecular formula was determined as $\mathrm{C}_{37} \mathrm{H}_{34}-$ $\mathrm{N}_{2} \mathrm{O}_{6}$ by high-resolution mass spectrometry. The 1-hydroxy-9acridone nuclei in the molecule was suggested by the UV absorptions at $\lambda_{\text {max }} 246,282,336,372$ and 423 nm , IR bands at $v_{\max } 3360,1630,1600$ and $1580 \mathrm{~cm}^{-1}$, and ${ }^{1} \mathrm{H}$ NMR signals at $\delta_{\mathrm{H}} 16.53$ and 14.12 due to two strongly hydrogen-bonded hydroxy protons, besides two deuterium-exchangeable proton signals at $\delta_{\mathrm{H}} 9.17$ and $6.01 .{ }^{5}$ The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Table 1) showed the presence of a prenyl group, an N-methyl group, and a lone aromatic proton. Treatment of glycobismineA 1 with methyl iodide in the presence of anhydrous potassium carbonate in acetone gave the N, O, O, O-tetramethyl derivative 2, which showed methyl signals at $\delta_{\mathbf{H}} 2.80,3.40,3.48,3.99$ and 4.07 , and at $\delta_{\mathrm{C}} 43.18,43.88,56.16,61.37$ and 62.89 in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, respectively, along with other signals analogous to those of the original alkaloid.

Further, structural analyses using proton decoupling experiments and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ correlation spectroscopy (COSY) of compound 1 revealed the presence of two pairs of four-spin proton systems due to two 1,2 -disubstituted aromatic rings assigned to ring- A and $-\mathrm{A}^{\prime}$ having no substituent in the acridone nuclei. A three-spin proton system at $\delta_{\mathrm{H}} 4.99$ (dd, $J 8.5$ and 10.8), 2.48 (dd, $J 10.8$ and 13.7) and 2.24 (dd, $J 8.5$ and 13.7) was assignable to protons due to a 4-equatorially substituted 2,2-dimethyl-3,4dihydropyran ring fused with an acridone nucleus. An angular

$A=$

1; $R^{1}=H, R^{2}=A$
4; $R^{1}=H, R^{2}=A$
$4^{\prime} ; R^{1}=H, R^{2}=A$
(diastereoisomer of 4)
5; $\mathrm{R}^{2}=\mathrm{H}$

6
orientation of the dihydropyran ring with respect to the acridone nucleus was shown by the appearance of a cross-peak due to three-bond ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ long-range connectivity between a typical lower field hydrogen-bonded hydroxy proton at $\delta_{\mathrm{H}} 14.12$ and a carbon ($\mathrm{C}-2$) at $\delta_{\mathrm{C}} 98.18$ bearing a lone aromatic proton at $\delta_{\mathrm{H}} 6.26\left(1 \mathrm{H}\right.$, singlet) in ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ long-range COSY, together with an observation of the nuclear Overhauser effect (NOE) between signals at $\delta_{\mathrm{H}} 9.17(1 \mathrm{H}$, singlet) and $4.99(1 \mathrm{H}$, double doublet) due to NH and $11-\mathrm{H}$, respectively. From these results, the structure of the upper structural unit of glycobismine-A 1 was assigned to the dihydro derivative of de- N -methylnor-
Table $1{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopic data of glycobismines and related compounds

No.	Glycobismine-A 1		Glycobismine-B 4		Glycobismine-C 4 ${ }^{\text {' }}$		Glycocitrine-II 3		5	
	δ_{H}	$\delta_{\text {c }}$	δ_{H}	$\delta_{\text {c }}$	$\delta_{\text {H }}$	$\delta_{C}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]$	δ_{H}	$\delta_{\text {c }}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]$	$\delta_{\text {H }}$	δ_{c}
1		163.29		162.27		160.85				
$1-\mathrm{OH}$	14.12 (s)		13.98 (s)		14.00 (br s)					
2	6.26 (s)	98.18	6.25 (s)	98.19	6.23 (br s)	96.55				
3		160.95		161.05		160.38				
4		97.11		99.70		99.55				
4 a		140.10		139.73		139.33				
5	7.07 (d, 8.3)	116.60	7.17 (d, 7.8)	116.06	7.20 (br d, 7.8)	117.03				
6	7.50 (t, 8.3)	133.59	7.49 (t, 7.8)	133.22	7.50 (brt, 7.8)	133.14				
7	7.15 (t, 8.3)	121.81	$7.10(t, 7.8)$	121.24	7.12 (brt, 7.8)	121.16				
8	8.24 (d, 8.3)	125.79	8.23 (d, 7.8)	125.91	8.23 (br d, 7.8) ${ }^{\text {b }}$	$124.52^{\text {b }}$				
8a		120.00		119.88		118.65				
9		181.33		181.23		180.07				
9 a		105.62		105.15		139.33				
NH	9.17 (s)		9.11 (s)		9.55 (br s)					
10a		140.48		140.34		103.84				
11	4.99 (dd, 8.5, 10.8)	23.64	4.50 (dd, 8.5, 10.5)	23.48	4.45 (t , 8.8) ${ }^{\text {c }}$	24.93				
12	$\begin{aligned} & 2.24(\mathrm{dd}, 8.5,13.7), \\ & 2.48(\mathrm{dd}, 10.8,13.7) \end{aligned}$	38.34	$\begin{aligned} & 1.98(\mathrm{dd}, 8.5,13.2), \\ & 2.37(\mathrm{brt}, 11.6) \end{aligned}$	36.83	$\begin{aligned} & 1.99 \text { (br dd, 8.8, 13.7), } \\ & 2.71 \text { (dd, 13.7, 10.8) } \end{aligned}$	36.23				
13		76.88		75.70		75.61				
13-Me	$\begin{aligned} & 1.38(3 \mathrm{H}, \mathrm{~s}), \\ & 1.56(3 \mathrm{H}, \mathrm{~s}) \end{aligned}$	$\begin{aligned} & 23.16, \\ & 29.60 \end{aligned}$	$\begin{aligned} & 1.31(3 \mathrm{H}, \mathrm{~s}), \\ & 1.51(3 \mathrm{H}, \mathrm{~s}) \end{aligned}$	$\begin{aligned} & 22.85, \\ & 29.77 \end{aligned}$	$\begin{aligned} & 1.30(3 \mathrm{H}, \mathrm{~s}), \\ & 1.54(3 \mathrm{H}, \mathrm{~s}) \end{aligned}$	$\begin{aligned} & 22.42, \\ & 28.98 \end{aligned}$				
$1{ }^{\prime}$		159.19		a		28.8		162.33		175.75
1'OH	16.53 (s)		18.59 (s)		17.37 (br s)		14.59 (s)		16.34 (s)	
2^{\prime}		108.83		107.97		107.54	6.30 (s)	96.57	5.52 (s)	95.52
3'		161.55		193.25		a		164.29		194.56
$3^{\prime}-\mathrm{OH}$	6.01 (s)									
$4{ }^{\prime}$		106.89		79.22		77.92		104.92		79.54
4^{\prime} - ${ }^{\text {OH}}$			5.15 (s)		5.50 (br s)				5.25 (s)	
$4 a^{\prime}$		145.61		158.49		158.10		146.82		158.87
$5{ }^{\prime}$	7.42 (d, 8.8)	122.00	7.78 (d, 8.8)	116.89	7.69 (br d, 7.8)	118.04	7.41 (t, 8.3)	116.99	7.81 (d, 8.8)	116.77
6^{\prime}	7.74 (t, 8.8)	134.40	7.89 (t, 8.8)	134.84	7.78 (brt)	134.46	7.71 (d, 8.3)	133.81	7.88 (t, 8.8)	134.40
$7{ }^{\prime}$	7.34 (t, 8.8)	116.41	7.65 (t, 8.8)	126.73	7.50 (br t, 7.8)	126.28	7.29 (t, 8.3)	121.23	7.60 (t, 8.8)	126.25
8^{\prime}	8.43 (d, 8.8)	126.17	8.57 (d, 8.8)	126.32	8.33 (br d, 7.8) ${ }^{\text {b }}$	$124.61{ }^{\text {b }}$	8.36 (dd, 1.7, 8.3)	124.93	8.48 (d, 8.8)	126.31
$8 a^{\prime}$		121.14		124.48		123.47		120.46		125.01
$9{ }^{\prime}$		181.75		177.90		176.84		180.34		178.07
$9 a^{\prime}$		106.44		105.77		105.44		105.82		106.50
NMe	3.81 (3 H, s)	43.85	4.37 (3 H, s)	39.56	4.39 ($3 \mathrm{H}, \mathrm{br} \mathrm{s}$)	$39.70^{\text {c }}$	3.84 (3 H, s)	43.28	4.44 ($3 \mathrm{H}, \mathrm{s}$)	39.48
$10 \mathrm{a}^{\prime}$		146.50		140.97		140.69		145.26		141.09
11^{\prime}	3.29 (2 H, br t, 5.9)	27.29	2.71 (2 H, d, 6.8)	42.82	2.87 (2 H, br s)	a	3.48 ($2 \mathrm{H}, \mathrm{d}, 6.0$)	26.50	2.74 (2 H, d, 7.3)	42.66
12^{\prime}	5.25 (br s)	122.32	4.97 (br s)	115.47	5.08 (br s)	115.57	5.41 (brt, 6.0)	124.74	5.01 (t, 7.3)	115.52
13^{\prime}		135.38		137.21		135.29		130.62		137.85
13^{\prime}-Me	$\begin{aligned} & 1.68(3 \mathrm{H}, \mathrm{~s}), \\ & 1.73(3 \mathrm{H}, \mathrm{~s}) \end{aligned}$	$\begin{aligned} & 18.15, \\ & 25.60 \end{aligned}$	$\begin{aligned} & 1.38(3 \mathrm{H}, \mathrm{~s}), \\ & 1.62(3 \mathrm{H}, \mathrm{~s}) \end{aligned}$	$\begin{aligned} & 17.95, \\ & 25.98 \end{aligned}$	$\begin{aligned} & 1.48(3 \mathrm{H}, \mathrm{br} \mathrm{~s}), \\ & 1.74(3 \mathrm{H}, \mathrm{br} \mathrm{~s}) \end{aligned}$	$\begin{aligned} & 16.88 \text {, } \\ & 23.96 \end{aligned}$	$\begin{aligned} & 1.83(3 \mathrm{H}, \mathrm{~s}), \\ & 1.84(3 \mathrm{H}, \mathrm{~s}) \end{aligned}$	$\begin{aligned} & 17.83 \\ & 25.39 \end{aligned}$	$\begin{aligned} & 1.40(3 \mathrm{H}, \mathrm{~s}), \\ & 1.65(3 \mathrm{H}, \mathrm{~s}) \end{aligned}$	$\begin{aligned} & 17.62 \\ & 25.90 \end{aligned}$

[^0]acronycine ($\left.A, R^{1}=H\right)^{6}$ having an equatorially oriented substituent at $\mathrm{C}-11$.

On the other hand, in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 1 , a signal pattern, excluding signals due to the upper half was similar to that of glycocitrine-II $3^{2 b . d}$ isolated from the same plant, taking into account some chemical-shift differences and lack of a lone aromatic proton signal at $\delta_{\mathrm{H}} 6.33$ in the spectrum of compound 3 (Table 1). Moreover, in the lower half of compound 1 , the location of the prenyl moiety at $\mathrm{C}-4^{\prime}$ was confirmed by NOE experiments as follows: Irradiation of the N methyl signal at $\delta_{\mathrm{H}} 3.81$ produced 9 and 7% enhancements of signals at $\delta_{\mathrm{H}} 3.29\left(2 \mathrm{H}, \mathrm{brt}, 11^{\prime}-\mathrm{H}\right)$ and $5.25\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 12^{\prime}-\mathrm{H}\right)$, respectively, along with signals at $\delta_{\mathrm{H}} 7.42\left(5^{\prime}-\mathrm{H}\right)$. The location of a hydroxy group at $\mathrm{C}-3^{\prime}$ was deduced from the presence of a three-bond correlation between the hydroxy proton at $\delta_{\mathrm{H}} 6.01$ and C-4' at $\delta_{\mathrm{C}} 106.89$ which have a two-bond correlation with the methylene proton at $\delta_{\mathrm{H}} 3.29$ on the prenyl moiety. These spectral data led us to assign the structure of the 2 -substituted glycocitrine-II 3 to the lower structural unit.

These structural features were supported by a mass spectroscopic analysis. In the electron impact mass spectrum (EI-MS) of compound 1 , principal fragment ions were shown at $m / z 602$, $309,294,293,278$ and 241 . The molecular ion at $m / z 602$ was considered to give rise to two ions from the halves of the molecules at $m / z 293$ (a) and $m / z 309(b)$. The ion at $m / z 294$ included an ion c and/or the ion derived from b by the elimination of a methyl radical, and an ion of $m / z 241$ also from the same ion \boldsymbol{b} by elimination of $-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CMe}_{2}$, followed by transfer of a hydrogen atom. A strong ion of $m / z 278$ was considered to have the structure d derived from a loss of a methyl radical from ion a.

a

c

b

d

The linkage of the two acridone nuclei between $\mathrm{C}-11$ and $\mathrm{C}-2^{\prime}$ in the upper and lower halves of the molecule, respectively, was further adduced from the following results of ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ longrange correlations: The methine proton $(11-\mathrm{H})$ at $\delta_{\mathrm{H}} 4.99$ showed three-bond correlations with hydroxylated carbons (C1^{\prime} and $\mathrm{C}-3^{\prime}$) at $\delta_{\mathrm{C}} 159.19$ and 161.55 , respectively, and a twobond connectivity with $\mathrm{C}-2^{\prime}$ at $\delta_{\mathrm{C}} 108.83$.

From these data, coupled with the results of three- and twobond ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ long-range connectivities in the COSY spectrum as shown by the arrows in Fig. 1, the structure of glycobismineA was proposed as 1 , corresponding to a binary acridone consisting of de- N-methylnoracronycine 6^{6} and glycocitrine-II 3 , ${ }^{2 b, d}$ both of which co-occurred in the same plant. ${ }^{2 d}$

Isolation of two bisacridone alkaloids having an ether linkage

Fig. $1{ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C}$ Long-range correlations in the long-range COSY spectrum of compound 1
between the two molecular halves has been reported from the Rutaceous plants. ${ }^{7}$ Glycobismine-A 1 is the first example of a carbon-carbon linked bisacridone alkaloid isolated from a natural source.*

In vitro anti-malarial activity of glycobismine-A 1 comparable to that of chloroquine diphosphate has been reported by one of us (H. F.). ${ }^{9}$

Structure of Glycobismine-B 4.-Glycobismine-B 4 was isolated as a yellow oil, $[\alpha]_{\mathrm{D}} \pm 0$ in chloroform and also showed no CD absorption in the range between 200 and 400 nm in methanol. The molecular formula was established as $\mathrm{C}_{37} \mathrm{H}_{34}-$ $\mathrm{N}_{2} \mathrm{O}_{7}$ by high-resolution mass analysis of a fast-atombombardment mass spectrum (FAB-MS). The UV spectrum exhibited absorption bands at $\lambda_{\text {max }} 213$ sh, $240,273,295$ sh, 334 and 392 sh , characteristic of the 9 -acridone nucleus. ${ }^{5}$ The IR spectrum showed bands at $v_{\text {max }} 1640$ and $1610 \mathrm{~cm}^{-1}$ which were also reminiscent of an acridone nucleus.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Table 1) showed the presence of two strongly hydrogen-bonded hydroxy groups ($\delta_{\mathrm{H}} 13.98$ and 18.59), an N-methyl ($\delta_{\mathrm{H}} 4.37 ; \delta_{\mathrm{C}} 39.56$), a prenyl [$\delta_{\mathrm{H}} 2.71$ (2 H), 4.97, $1.38(3 \mathrm{H})$ and $1.62(3 \mathrm{H})$], two tertiary methyls attached to an oxygen-linked carbon $\left[\delta_{\mathrm{H}} 1.31\right.$ and 1.51 (each 3 $\mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 75.70$], and a lone aromatic proton [$\delta_{\mathrm{H}} 6.25(\mathrm{~s})$]. The results of the analysis of the ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY spectrum together with coupling constant values of the ${ }^{1} \mathrm{H}$ NMR signals revealed the presence of two pairs of four-spin and one three-spin proton system due to non-substituted A and A^{\prime} rings in the acridone nuclei and a- CHCH_{2} - group in the 2,2-dimethyldihydropyran ring having an equatorially oriented substituent. Close resemblance of chemical shifts and multiplicities of proton and carbon signals due to the upper-half acridone nucleus between the NMR spectra of compounds 1 and 4 (Table 1), together with the occurrence of significant mass fragment ions at $m / z 293,294$ and 278 ascribed to ions a, cand d, respectively, as the same in the EI-MS of 1 indicated that the structure of compound 4 in

[^1]

Fig. $2{ }^{13} \mathrm{C}^{-1} \mathrm{H}$ Long-range correlations in the HMBC spectrum of compound 4
the upper half was the same as that in the molecule of compound 1, and this was supported by ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ long-range relationships in the ${ }^{1} \mathrm{H}$ detected heteronuclear multiple bond connectivity (HMBC) spectrum summarized by arrows in Fig. 2.

On the other hand, the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 4 , excluding signals due to the upper half, showed additional signals due to a carbonyl carbon (δ_{C} 193.25), a tetrasubstituted carbon ($\delta_{\mathrm{C}} 79.22$) and a hydroxy group ($\delta_{\mathrm{H}} 5.15$), besides an N -methyl, a prenyl and a strongly hydrogen-bonded hydroxy group described previously. In the HMBC spectrum of compound 4 (Fig. 2), the appearance of ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ three-bond correlations between a hydroxy proton at $\delta_{\mathrm{H}} 5.15$ and an angular carbon ($\mathrm{C}-4^{\prime} \mathrm{a}$) at $\delta_{\mathrm{C}} 158.49$ which correlated to both the N-methyl ($\delta_{\mathrm{H}} 4.37$) and the methylene protons $\left(11^{\prime}-\mathrm{H}_{2}, \delta_{\mathrm{H}}\right.$ 2.71) suggested the location of the hydroxy and prenyl groups at C-4', which was also supported by the observation of a nuclear Overhauser enhancement (NOE) between $11^{\prime}-\mathrm{H}_{2}$ and N-methyl protons. Moreover, the signal pattern of the ${ }^{1} \mathrm{H}$ NMR spectrum was found to be similar to that of compound $5,{ }^{10}$ one of the oxidation products of glycocitrine-II $3^{2 b . d}$ with mchloroperbenzoic acid (MCPBA), taking into account some differences in chemical shifts and a lack of a singlet ($\delta_{\mathrm{H}} 5.52$) due to $2^{\prime}-\mathrm{H}$ (Table 1) in compound 5 , suggesting the structure of the lower half and the location of the linkage at $\mathrm{C}-2^{\prime}$ in the molecule 4. The linkage in the upper and lower halves at $\mathrm{C}-11$ and $\mathrm{C}-2^{\prime}$, respectively, was also indicated by an observation of ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ two-bond correlation between $\mathrm{C}-2^{\prime}$ and $11-\mathrm{H}$ in the HMBC spectrum (Fig. 2). These spectral results, together with those of the ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ long-range correlations shown by arrows in Fig. 2, led us to propose structure 4 for glycobismine-B, except for the relative stereochemistry between C-11 and C-4'.

Structure of Glycobismine-C 4'.-Glycobismine-C 4', a yellow oil, was also obtained as a racemate; $[\alpha]_{D} \pm 0$ in chloroform and no $C D$ absorption in the range $200-400 \mathrm{~nm}$. The molecular formula $\mathrm{C}_{37} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{7}$ was found to be the same as that of compound 4 by HR-FAB-MS. The UV and IR spectra (see Experimental section) also showed absorptions characteristic of 9 -acridones. ${ }^{5}$ The ${ }^{1} \mathrm{H}$ NMR spectrum also revealed the presence of two acridones having no substituent on the A- and A^{\prime}-ring, two strongly hydrogen-bonded hydroxy groups, an N methyl, and a prenyl group. The presence of an angularly
oriented dimethyldihydropyran ring was suggested by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals (Table 1) and the appearance of ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ three-bond connectivities between a typical lower field hydro-gen-bonded hydroxy proton at $\delta_{\mathrm{H}} 14.00$ and $\mathrm{C}-2\left(\delta_{\mathrm{C}} 96.55\right)$ bearing a lone aromatic proton at $\delta_{\mathrm{H}} 6.23(1 \mathrm{H}, \mathrm{s})$ in the HMBC spectrum. The overall signal pattern of the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 4^{\prime} was similar to that of compound 4 , except for a line broadening of signals in the spectra in CDCl_{3}, even in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ solution at $70^{\circ} \mathrm{C}$, and some chemical-shift differences.

On the basis of the aforementioned results, together with good similarity of the mass fragmentation and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ longrange correlations in the HMBC spectrum of compound $\mathbf{4}^{\prime}$ with those of its isomer 4, glycobismine-C 4^{\prime} was considered to be a diastereoisomer of glycobismine-B 4.*

Some significant differences in chemical shifts of the ${ }^{1} \mathrm{H}$ NMR spectrum of glycobismine-C 4^{\prime} compared with that of compound 4 were observed as follows: (a) paramagnetic shifts of an equatorial $12-\mathrm{H}, 11^{\prime}-\mathrm{H}$ and NH signals by $0.34,0.16$ and 0.44 ppm , respectively, and (b) diamagnetic shifts ($0.24-0.11$ $\mathrm{ppm})$ of proton signals on the lower acridone A^{\prime}-ring ($5^{\prime}-, 6^{\prime}$-, $7^{\prime}-$ and $\left.8^{\prime}-\mathrm{H}\right)$. On the basis of these spectral data, attempts at assignment of the relative stereochemistries in isomers 4 and 4^{\prime} by using Dreiding models were unsuccessful.

Glycobismines 1, 4 and 4^{\prime} can be considered to occur biogenetically by an oxidative coupling or acid-catalysed reaction between the corresponding acridone derivatives. Since these alkaloids were obtained as racemates, the possibility of a coupling reaction occurring during isolation procedures cannot be excluded. However, at present it is impossible to give a definite answer to whether these alkaloids are artefacts or true natural metabolites.

Experimental

M.p.s were measured on a micromelting point hot-stage apparatus (Yanagimoto). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on GX-270 (JEOL) and GX-400 (JEOL) spectrometers, respectively, for solutions in CDCl_{3}, unless otherwise stated. Chemical shifts are shown in δ-values with tetramethylsilane as internal reference. J-Values are given in $\mathrm{Hz} .{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ long-range COSY and HMBC spectra were measured at $J 5$ and 8 Hz , respectively, on the GX-400. EI-, HR- and FAB-MS measured on an M-80 (Hitachi) or a JMS-HX-110 (JEOL) spectrometer having a direct inlet system. UV spectra were recorded on a UVIDEC-610C double-beam spectrophotometer (JASCO) for solutions in methanol, IR spectra on an IR-810 (JASCO) for samples in CHCl_{3}, optical rotations on a DIP-181 (JASCO) for solutions in CHCl_{3} at $25^{\circ} \mathrm{C}\left([\alpha]_{D}\right.$-values are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$), and CD spectra on a $\mathrm{J}-600$ (JASCO) for samples in ethanol or methanol. Preparative TLC (PLC) was carried out on Kieselgel $60 \mathrm{~F}_{254}$ (Merck).

Isolation of Glycobismine-A 1, - B 4 and -C 4'.-The dried root and stem bark (7 kg) of Glycosmis citrifolia (Willd.) Lindl. (Rutaceae) was collected in Heng Chun Tropical Botanical Garden (Kehg-Ting Botanical Garden), Taiwan, and extracted with ethanol under reflux. The ethanolic extract was treated under the procedure previously reported. ${ }^{2}$ The methanolic mother liquor of atalaphyllidine, one of the known monomeric acridone alkaloids, was treated with CHCl_{3} to obtain glyco-bismine-A 1 as yellow prisms (150 mg). The mother liquor after

[^2]filtration of crystalline 1 was subjected to silica gel PLC with a mixture of CHCl_{3}-benzene-acetone $(5: 4: 1)$ as developing solvent. Glycobismine-B $4(10 \mathrm{mg})$ and $-\mathrm{C} 4^{\prime}(4 \mathrm{mg})$ were isolated, with R_{f} values 0.44 and 0.42 , respectively.

Glycobismine-A 1. Yellow needles, m.p. 256-258 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}} \pm 0$ (c $0.80, \mathrm{CHCl}_{3}$); $\mathrm{CD}(\mathrm{EtOH})$: no absorption in range $200-400$ $\mathrm{nm} ; \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm}(\log \varepsilon) 219 \mathrm{sh}(4.64), 235$ sh (4.72), 246 (4.75), 282 (4.73), 300sh (4.62), 336sh (4.13), 372 (4.20) and 423 (4.02); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3410,3360 \mathrm{br}, 1630,1600,1580$ and $1545 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ and $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ (see Table 1). Difference NOE: Irradiation of $\mathrm{NH}\left(\delta_{\mathrm{H}} 9.17\right)-4 \%$ enhancement of $1^{\prime}-\mathrm{OH}$ ($\delta_{\mathrm{H}} 16.53$), 12% enhancement of $5-\mathrm{H}\left(\delta_{\mathrm{H}} 7.07\right)$ and 12% enhancement of $11-\mathrm{H}\left(\delta_{\mathrm{H}} 4.99\right)$; irradiation of NMe ($\delta_{\mathrm{H}} 3.81$)19,9 and 7% enhancement of $5^{\prime}-\mathrm{H}\left(\delta_{\mathrm{H}} 7.42\right), 11^{\prime}-\mathrm{H}\left(\delta_{\mathrm{H}} 3.29\right)$ and $12^{\prime}-\mathrm{H}\left(\delta_{\mathrm{H}} 5.25\right)$, respectively; $m / z(\%) 602\left(\mathrm{M}^{+}, 12\right), 309$ (52), 294 (57), 293 (30), 278 (100), 266 (10), 254 (14), 252 (19) and 241 (61) (Found: $\mathrm{M}^{+}, 602.2444 . \mathrm{C}_{37} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires M , 602.2415 ; Found: 309.1355. $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{3}$ requires $m / z, 309.1363$; Found: 293.1037. $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{3}$ requires $m / z, 293.1050$).
$\mathrm{N}, \mathrm{O}, \mathrm{O}, \mathrm{O}-$ Tetramethylglycobismine- A 2. Compound 1 (5 mg) was dissolved in acetone ($5 \mathrm{~cm}^{3}$) and the solution was refluxed with methyl iodide ($2 \mathrm{~cm}^{3}$) for 7 h in the presence of anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ (30 mg). The solution was filtered and the filtrate was concentrated. The residue was subjected to PLC to give compound $2(5 \mathrm{mg})$ as a pale yellow oil, $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 210$, $272,303 \mathrm{sh}, 325 \mathrm{sh}$ and $394 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1620,1595$ and $1560 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.44(1 \mathrm{H}, \mathrm{d}, J 6.8), 8.16(1 \mathrm{H}, \mathrm{d}, J$ 6.9), $7.67(1 \mathrm{H}, \mathrm{t}, J 6.9), 7.27(2 \mathrm{H}, \mathrm{m}), 7.13(1 \mathrm{H}, \mathrm{t}, J 6.9), 6.99(1$ $\mathrm{H}, \mathrm{t}, J 6.9), 6.48(1 \mathrm{H}, \mathrm{d}, J 6.8), 6.38(1 \mathrm{H}, \mathrm{s}), 5.16(1 \mathrm{H}, \mathrm{dd}, J 7.8$ and 10.8), $4.52(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.07(3 \mathrm{H}, \mathrm{s}), 3.99(3 \mathrm{H}, \mathrm{s}), 3.48(3 \mathrm{H}, \mathrm{s})$, $3.40(3 \mathrm{H}, \mathrm{s}), 3.08(2 \mathrm{H}, \mathrm{m}), 2.80(3 \mathrm{H}, \mathrm{s}), 2.17(1 \mathrm{H}, \mathrm{m}), 1.88(1 \mathrm{H}$, $\mathrm{d}, J 10.8), 1.60(3 \mathrm{H}, \mathrm{s}), 1.54(3 \mathrm{H}, \mathrm{s}), 1.47(3 \mathrm{H}, \mathrm{s})$ and $1.44(3 \mathrm{H}, \mathrm{s})$; $\delta_{\mathrm{C}}\left(25 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 177.91,177.38,164.10,160.24,160.06$, $157.90,150.29,148.54,145.73,145.20,133.15,132.27,131.92$, $127.01,126.54,125.66,124.96,124.03,122.15,121.63,121.28$, $117.77,116.48,116.19,115.60,112.33,106.48,95.89,75.23,62.89$, 61.37, 56.16, 43.88, 43.18, 41.42, 29.84, 29.72, 28.61, 25.33, 22.93 and $17.84 ; m / z(\%) 658\left(\mathrm{M}^{+}, 73\right), 643(100), 338(22), 337(10)$, 320 (53), 308 (47), 307 (17), 306 (51), 292 (58), 278 (26) and 262 (24).

Glycobismine-B 4. A yellow oil; $[\alpha]_{\mathrm{D}} \pm 0\left(c 0.20, \mathrm{CHCl}_{3}\right)$; CD (MeOH) : no absorption in range $200-400 \mathrm{~nm} ; \lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm}$ $213 \mathrm{sh}, 240,273,295 \mathrm{sh}, 334$ and $392 \mathrm{sh} ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3360$, 1640, 1610 and $1590 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ and $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ (see Table 1); $\delta_{\mathrm{H}}\left[400 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} ; 70^{\circ} \mathrm{C}\right] 13.96(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{OH}), 6.03(1 \mathrm{H}$, $\mathrm{s}, 2-\mathrm{H}), 8.13(1 \mathrm{H}$, overlapped d, $J 7.8,5-\mathrm{H}), 7.22(1 \mathrm{H}, \mathrm{t}, J 7.8,6-$ H), $7.20(1 \mathrm{H}, \mathrm{t}, J 7.8,7-\mathrm{H}), 8.45(1 \mathrm{H}, \mathrm{d}, J 7.8,8-\mathrm{H}), 9.56(1 \mathrm{H}, \mathrm{br}$ $\mathrm{s}, \mathrm{NH}), 4.53(1 \mathrm{H}, \mathrm{dd}, J 8.8$ and $10.8,11-\mathrm{H}), 2.35(1 \mathrm{H}, \mathrm{t}, J 12.7,12-$ H), $1.98(1 \mathrm{H}, \mathrm{dd}, J 8.8$ and $12.7,12-\mathrm{H}), 1.46(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 1.28$ ($3 \mathrm{H}, \mathrm{s}, 13$ or $13^{\prime}-\mathrm{Me}$); $18.20\left(1 \mathrm{H}\right.$, br s, $\left.1^{\prime}-\mathrm{OH}\right), 6.24\left(1 \mathrm{H}\right.$, br s, $4^{\prime}-$ $\mathrm{OH}), 7.25\left(1 \mathrm{H}, \mathrm{d}, J 8.8,5^{\prime}-\mathrm{H}\right), 8.00\left(1 \mathrm{H}, \mathrm{t}, J 8.8,6^{\prime}-\mathrm{H}\right), 7.63(1 \mathrm{H}$, $\left.\mathrm{t}, J 8.8,7^{\prime}-\mathrm{H}\right), 8.13\left(1 \mathrm{H}\right.$, overlapped d, $\left.J 8.8,8^{\prime}-\mathrm{H}\right), 4.46(3 \mathrm{H}, \mathrm{s}$, NMe), $2.83\left(2 \mathrm{H}, \mathrm{m}, 11^{\prime}-\mathrm{H}\right), 4.77\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 12^{\prime}-\mathrm{H}\right), 1.34(3 \mathrm{H}, \mathrm{s}$, $\left.13^{\prime}-\mathrm{Me}\right)$ and $1.28\left(3 \mathrm{H}, \mathrm{s}, 13^{\prime}\right.$ or $\left.13-\mathrm{Me}\right)$. Each ${ }^{1} \mathrm{H}$ NMR spectrum taken at 27,40 and $60^{\circ} \mathrm{C}$ was the same as that measured at $70^{\circ} \mathrm{C}$. Difference NOE: Irradiation of NMe ($\delta_{\mathbf{H}}$ 4.37) - 15 and 5% enhancement of $5^{\prime}-\mathrm{H}\left(\delta_{\mathbf{H}} 7.78\right)$ and $11^{\prime}-\mathrm{H}\left(\delta_{\mathrm{H}}\right.$ 2.71), respectively; irradiation of $\mathrm{NH}\left(\delta_{\mathrm{H}} 9.11\right)-13$ and 16% enhancement of $5-\mathrm{H}\left(\delta_{\mathrm{H}} 7.17\right)$ and $11-\mathrm{H}\left(\delta_{\mathrm{H}} 4.50\right)$, respectively; m / z (FAB) $619\left(\mathrm{M}^{+}+\mathrm{H}\right)$ (Found: 619.2461. $\mathrm{C}_{37} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires $m / z, 619.2444) ; m / z(\mathrm{EI}, \%) 600\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 11\right), 586$ (27), 571 (10), 323 (17), 307 (29), 294 (53), 293 (83), 278 (100), 257 (40), 242 (37), 228 (26), 227 (46) and 214 (32) (Found: 600.2289. $\mathrm{C}_{37} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires $\mathrm{m} / \mathrm{z}, \quad 600.2259$; Found: 323.1182 . $\mathrm{C}_{19} \mathrm{H}_{1}, \mathrm{NO}_{4}$ requires $m / z, 323.1157$; Found: 294.1133. $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}_{3}$ requires $m / z, 294.1129$).

Glycobismine-C 4^{\prime}. A yellow oil; $[\alpha]_{\mathrm{D}} \pm 0\left(c 0.10, \mathrm{CHCl}_{3}\right)$;
$\mathrm{CD}(\mathrm{MeOH})$: no absorption in range $200-400 \mathrm{~nm}$; $\lambda_{\text {max }}-$ $(\mathrm{MeOH}) / \mathrm{nm} 213 \mathrm{sh}, 243,272,295 \mathrm{sh}, 332$ and 392 sh ; $v_{\max }-$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3310,1645,1615$ and $1590 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ and $\delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]$ (see Table 1); $\delta_{\mathrm{H}}\left[400 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} ; 70^{\circ} \mathrm{C}\right]$ $13.98(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{OH}), 6.01(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 7.43(1 \mathrm{H}, \mathrm{d}, J 7.6,5-\mathrm{H})$, $7.62(1 \mathrm{H}, \mathrm{t}, J 7.6,6-\mathrm{H}), 7.20(1 \mathrm{H}, \mathrm{t}, J 7.6,7-\mathrm{H}), 8.11(1 \mathrm{H}$, overlapped d, J 7.6, 8-H), $9.71(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 4.45(1 \mathrm{H}$, overlapped, $11-\mathrm{H}), 2.01(1 \mathrm{H}$, dd, $J 8.8$ and $13.7,12-\mathrm{H}), 2.52(1 \mathrm{H}$, overlapped, $12-\mathrm{H})$, $1.26(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 1.46(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me})$; $17.26\left(1 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{OH}\right), 6.32\left(1 \mathrm{H}, \mathrm{br}\right.$ s, $\left.4^{\prime}-\mathrm{OH}\right), 8.11(1 \mathrm{H}$, overlapped d, $\left.J 7.6,5^{\prime}-\mathrm{H}\right), 7.97\left(1 \mathrm{H}, \mathrm{t}, J 7.6,6^{\prime}-\mathrm{H}\right), 7.66(1 \mathrm{H}, \mathrm{t}, J$ $\left.7.6,7^{\prime}-\mathrm{H}\right), 8.32\left(1 \mathrm{H}, \mathrm{d}, J 7.6,8^{\prime}-\mathrm{H}\right), 4.47$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 2.81 (2 H , $\left.\mathrm{br}, 11^{\prime}-\mathrm{H}\right), 4.72\left(1 \mathrm{H}, \mathrm{br}, 12^{\prime}-\mathrm{H}\right), 1.24\left(3 \mathrm{H}, \mathrm{s}, 13^{\prime}-\mathrm{Me}\right)$ and 1.41 (3 $\mathrm{H}, \mathrm{s}, 13^{\prime}-\mathrm{Me}$). Each ${ }^{1} \mathrm{H}$ NMR spectrum taken at 27,40 and $60^{\circ} \mathrm{C}$ was the same as that measured at $70^{\circ} \mathrm{C}$. Difference NOE: Irradiation of $\mathrm{NMe}\left(\delta_{\mathrm{H}} 4.39\right)-13,3$ and 5% enhancement of 5^{\prime} $\mathrm{H}\left(\delta_{\mathrm{H}} 7.69\right), 4^{\prime}-\mathrm{OH}\left(\delta_{\mathrm{H}} 5.50\right)$ and $11^{\prime}-\mathrm{H}\left(\delta_{\mathrm{H}} 2.87\right)$, respectively; irradiation of $\mathrm{NH}\left(\delta_{\mathrm{H}} 9.55\right)-14$ and 18% enhancement of $5-\mathrm{H}$ ($\delta_{\mathrm{H}} 7.20$) and $11-\mathrm{H}\left(\delta_{\mathrm{H}} 4.45\right) ; m / z(\mathrm{FAB}) 619\left(\mathrm{M}^{+}+\mathrm{H}\right)$ (Found: $619.2450 . \mathrm{C}_{37} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires $m / z, 619.2444$); $m / z(\mathrm{EI}, \%) 600$ $\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 12\right), 586$ (31), 571 (11), 543 (9), 323 (13), 307 (32), 294 (63), 293 (90), 278 (100), 257 (57), 242 (55), 228 (32), 227 (32) and 214 (45) (Found: 600.2287. $\mathrm{C}_{37} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires m / z, 600.2259; Found: 323.1202. $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{4}$ requires $m / z, 323.1157$; Found: 294.1102. $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}_{3}$ requires m / z, 294.1129).

Acknowledgements

We thank Mr. K. Masuda (Analytical Center, Meijo University) for the HR-FAB-MS measurements. This work was supported in part by a Grant-in-Aid for Scientific Research (to H. F.) from the Ministry of Education, Science and Culture, Japan.

References

1 Preliminary communication, H. Furukawa, T.-S. Wu, C.-S. Kuoh, T. Sato, Y. Nagai and K. Kagei, Chem. Pharm. Bull., 1984, 32, 1647.
2 T.-S. Wu and H. Furukawa, (a) Heterocycles, 1982, 19, 825; (b) p. 1047; (c) p. 1227; (d) T.-S. Wu, H. Furukawa, C.-S. Kuoh and K.-S. Hsu, J. Chem. Soc., Perkin Trans. 1, 1983, 1681.
3 T. R. Govindachari, B. R. Pai and P. S. Subramaniam, Tetrahedron, 1966, 22, 3245; K. Rastogi, K. S. Randhir and S. P. Popli, Phytochemistry, 1980, 19, 945; I. H. Bowen, K. P. W. C. Perera and J. R. Lewis, Phytochemistry, 1980, 19, 1566; V. Kumar, J. Reisch and A. Wickramasinghe, Aust. J. Chem., 1989, 42, 1375.

4 H. Furukawa, C. Ito, T. Mizuno, M. Ju-ichi, M. Inoue, I. Kajiura and M. Omura, J. Chem. Soc., Perkin Trans. 1, 1990, 1593 and references cited therein; C. Ito, S. Tanahashi, Y. Tani, M. Ju-ichi, M. Omura and H. Furukawa, Chem. Pharm. Bull., 1990, 38, 2586; M. Ju-ichi, Y. Takemura, C. Ito and H. Furukawa, Heterocycles, 1991, 32, 1781.
5 J. Reisch, K. Szendri, E. Minker and I. Novak, Pharmazie, 1972, 27, 208; R. D. Brown and F. N. Lahey, Aust. J. Sci. Res., Ser. A, 1950, 3 593.

6 M. T. Fauvel, J. Gleye, C. Moulis and I. Fouraste, Planta Med. Phytother., 1978, 12, 207.
7 A. W. Fraser and J. R. Lewis, J. Chem. Soc., Chem. Commun., 1973, 615.

8 S. Funayama and G. A. Cordell, J. Nat. Prod., 1986, 49, 210 and references cited therein.
9 H. Fujioka, Y. Nishiyama, H. Furukawa and N. Kumada, Antimicrobial Agents Chemother., 1989, 33, 6.
10 C. Ito, T. Ono, K. Hatano and H. Furukawa, Chem. Pharm. Bull., 1993, 41, in the press.

Paper 2/04961I
Received 16th September 1992
Accepted 21st October 1992

[^0]: Values are in ppm (δ_{H} and δ_{C}). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 270 or 400 MHz and 100 MHz , respectively, in CDCl_{3}, unless otherwise stated. Each proton signal corresponds to 1 H , unless . determined by ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ COSY, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ long-range COSY and/or HMBC spectrometry. ${ }^{\text {c }}$ Overlapped signals.

[^1]: * The C-C-linked oligomers of noracronycine, one of the monomeric acridones, have been reported to be prepared by treatment of noracronycine with HCl or $\mathrm{H}_{2} \mathrm{SO}_{4}$ in methanol (ref. 8).

[^2]: * The possibility of conformational isomers was excluded, because the temperature-dependent variability of signal resonances could not be observed in ${ }^{1} \mathrm{H}$ NMR [in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$] spectra measured at 27, 40, 60 and $70^{\circ} \mathrm{C}$ for both alkaloids (4 and 4^{\prime}).

